On the effect of optimal size and location of D-STATCOM in loss reduction of distribution system

M. A. Rodríguez1, *, J. Gómez2, M. A. Martínez2

  1. Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá, Colombia
  2. Department of Electrical and Electronics Engineering, Universidad de los Andes, Bogotá, Colombia


Reducing system loss and improving voltage profile and stability are proposed in this study using a D-STATCOM in distribution systems. Three indices have been considered in the problem formulations to achieve the aforementioned objectives. To implement the proposed method, a D-STATCOM is modeled in power flow calculations to compensate the reactive power and improve the system performance. The Particle Swarm Algorithm (PSO) and Backward-Forward power flow method are used to solve this optimization problem. Two IEEE standard systems, IEEE 33-bus and 69-bus systems, have been selected to implement the proposed method. The simulation results demonstrate that using D-STATCOM in the distribution systems can effectively reduce system loss and improve system voltage profile and stability.


D-STATCOM, Optimal placement, Total loss, Voltage profile, Voltage stability, PSO algorithm

Digital Object Identifier (DOI)


Article history

Received 1 December 2018, Received in revised form 20 January 2019, Accepted 2 February 2019

Full text

DownloadAvailable in PDF
Portable Document Format

How to cite

Rodríguez MA, Gómez J, and Martínez MA (2019). On the effect of optimal size and location of D-STATCOM in loss reduction of distribution system. Annals of Electrical and Electronic Engineering, 2(3): 1-7

References (24)

  1. Al Abri RS, El-Saadany EF, and Atwa YM (2013). Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation. IEEE Transactions on Power Systems, 28(1): 326-334. https://doi.org/10.1109/TPWRS.2012.2200049   [Google Scholar]  
  2. Chakravorty M and Das D (2001). Voltage stability analysis of radial distribution networks. International Journal of Electrical Power and Energy Systems, 23(2): 129-135. https://doi.org/10.1016/S0142-0615(00)00040-5   [Google Scholar]  
  3. Devi S and Geethanjali M (2014). Application of modified bacterial foraging optimization algorithm for optimal placement and sizing of distributed generation. Expert Systems with Applications, 41(6): 2772-2781. https://doi.org/10.1016/j.eswa.2013.10.010   [Google Scholar]  
  4. Ebrahimpourain R and Kazemi M (2014). Multi-objective placement of multiple distributed energy resources in distribution system using imperialist competitive algorithm (ICA). International Journal on Technical and Physical Problems of Engineering (IJTPE), 6(18): 89-95. https://doi.org/10.1109/TPWRS.2012.2237043   [Google Scholar]  
  5. Georgilakis PS and Hatziargyriou ND (2013). Optimal distributed generation placement in power distribution networks: Models, methods, and future research. IEEE Transactions on Power Systems, 28(3): 3420-3428. https://doi.org/10.1016/j.asej.2016.01.006   [Google Scholar]  
  6. Gnanasekaran N, Chandramohan S, Kumar PS, and Imran AM (2016). Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm. Ain Shams Engineering Journal, 7(2): 907-916. https://doi.org/10.1016/j.epsr.2008.12.007   [Google Scholar]  
  7. Gözel T and Hocaoglu MH (2009). An analytical method for the sizing and siting of distributed generators in radial systems. Electric Power Systems Research, 79(6): 912-918. https://doi.org/10.1016/j.procs.2015.10.100   [Google Scholar]  
  8. Gupta AR and Kumar A (2015). Energy savings using D-STATCOM placement in radial distribution system. Procedia Computer Science, 70: 558-564. https://doi.org/10.1016/j.asej.2016.05.009   [Google Scholar]  
  9. Gupta AR and Kumar A (2016). Optimal placement of D-STATCOM using sensitivity approaches in mesh distribution system with time variant load models under load growth. Ain Shams Engineering Journal, 9(4): 783-799. https://doi.org/10.1016/j.asej.2016.05.009   [Google Scholar]  
  10. Kefayat M, Ara AL, and Niaki SN (2015). A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources. Energy Conversion and Management, 92: 149-161. https://doi.org/10.1016/j.enconman.2014.12.037   [Google Scholar]  
  11. Kennedy J (2011). Particle swarm optimization. In: Sammut C and Webb GI (Eds.), Encyclopedia of machine learning: 760-766. Springer, Boston, USA.   [Google Scholar]
  12. Khodabakhshian A and Andishgar MH (2016). Simultaneous placement and sizing of DGs and shunt capacitors in distribution systems by using IMDE algorithm. International Journal of Electrical Power and Energy Systems, 82: 599-607. https://doi.org/10.1016/j.ijepes.2016.04.002   [Google Scholar]
  13. Mistry KD and Roy R (2014). Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth. International Journal of Electrical Power and Energy Systems, 54: 505-515. https://doi.org/10.1016/j.ijepes.2013.07.032   [Google Scholar]
  14. Devi S and Geethanjali M (2014). Optimal location and sizing determination of distributed generation and DSTATCOM using particle swarm optimization algorithm. International Journal of Electrical Power and Energy Systems, 62: 562-570. https://doi.org/10.1016/j.ijepes.2014.05.015   [Google Scholar]
  15. Mohandas N, Balamurugan R, and Lakshminarasimman L (2015). Optimal location and sizing of real power DG units to improve the voltage stability in the distribution system using ABC algorithm united with chaos. International Journal of Electrical Power and Energy Systems, 66: 41-52. https://doi.org/10.1016/j.ijepes.2014.10.033   [Google Scholar]
  16. Nanda J, Srinivas MS, Sharma M, Dey SS, and Lai LL (2000). New findings on radial distribution system load flow algorithms. In 2000 IEEE Power Engineering Society Winter Meeting Conference, IEEE, Singapore, Singapore, 2: 1157-1161. https://doi.org/10.1109/PESW.2000.850107   [Google Scholar]
  17. Poornazaryan B, Karimyan P, Gharehpetian GB, and Abedi M (2016). Optimal allocation and sizing of DG units considering voltage stability, losses and load variations. International Journal of Electrical Power and Energy Systems, 79: 42-52. https://doi.org/10.1016/j.ijepes.2015.12.034   [Google Scholar]
  18. Raju MR, Murthy KR, and Ravindra K (2012). Direct search algorithm for capacitive compensation in radial distribution systems. International Journal of Electrical Power and Energy Systems, 42(1): 24-30. https://doi.org/10.1016/j.ijepes.2012.03.006   [Google Scholar]
  19. Shirmohammadi D, Hong HW, Semlyen A, and Luo GX (1988). A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Transactions on power systems, 3(2): 753-762. https://doi.org/10.1109/59.192932   [Google Scholar]
  20. Singh D, Misra RK, and Singh D (2007). Effect of load models in distributed generation planning. IEEE Transactions on Power Systems, 22(4): 2204-2212. https://doi.org/10.1109/TPWRS.2007.907582   [Google Scholar]
  21. Singh D, Singh D, and Verma KS (2009). Multiobjective optimization for DG planning with load models. IEEE Transactions on Power Systems, 24(1): 427-436. https://doi.org/10.1109/TPWRS.2008.2009483   [Google Scholar]
  22. Soroudi A and Ehsan M (2012). Imperialist competition algorithm for distributed generation connections. IET Generation, Transmission and Distribution, 6(1): 21-29. https://doi.org/10.1049/iet-gtd.2011.0190   [Google Scholar]
  23. Tan WS, Hassan MY, Majid MS, and Rahman HA (2013). Optimal distributed renewable generation planning: A review of different approaches. Renewable and Sustainable Energy Reviews, 18: 626-645. https://doi.org/10.1016/j.rser.2012.10.039   [Google Scholar]
  24. Viral R and Khatod DK (2012). Optimal planning of distributed generation systems in distribution system: A review. Renewable and Sustainable Energy Reviews, 16(7): 5146-5165. https://doi.org/10.1016/j.rser.2012.05.020   [Google Scholar]